Next
Learning Symbolic Physics with Graph Networks
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Towards an Understanding of Wide, Deep Neural Networks
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • English (United Kingdom)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Towards an Understanding of Wide, Deep Neural Networks
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Towards an Understanding of Wide, Deep Neural Networks

            Dez 14, 2019

            Sprecher:innen

            YB

            Yasaman Bahri

            Sprecher:in · 0 Follower:innen

            Über

            Machine learning methods have had great success in learning complex representations that enable them to make predictions about unobserved data. Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets in trillions of sky pixels, to finding machine learning inspired solutions to the quantum many-body problem, to detecting anomalies in event streams from the Large Hadron Collider. Tackling a number of associated data-intensive tasks including, but not …

            Organisator

            N2
            N2

            NIPS 2019

            Konto · 963 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über NIPS 2019

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Track 4 Session 4 Spotlights 2
            18:00

            Track 4 Session 4 Spotlights 2

            Pasin Manurangsi, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed Talk: Data Processing Equalities
            14:40

            Contributed Talk: Data Processing Equalities

            Robert Williamson

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Exploring Generative 3D Modeling for Content Creation
            32:30

            Exploring Generative 3D Modeling for Content Creation

            Niloy Mitra

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk: Foundations of Causal Inference
            36:13

            Invited Talk: Foundations of Causal Inference

            Negar Kiyavash

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed talk 8 – Way Off-Policy Deep Reinforcement Learning of Implicit Human Preferences in Dialog
            07:47

            Contributed talk 8 – Way Off-Policy Deep Reinforcement Learning of Implicit Human Preferences in Dialog

            Asma Ghandeharioun

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening Remarks
            06:28

            Opening Remarks

            Azalia Mirhoseini

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NIPS 2019 folgen