Další
Learning Symbolic Physics with Graph Networks
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Towards an Understanding of Wide, Deep Neural Networks
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Titulky
      • Off
      • English (auto-generated)
      • English (United Kingdom)
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Towards an Understanding of Wide, Deep Neural Networks
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Towards an Understanding of Wide, Deep Neural Networks

            14. prosince 2019

            Řečníci

            YB

            Yasaman Bahri

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Machine learning methods have had great success in learning complex representations that enable them to make predictions about unobserved data. Physical sciences span problems and challenges at all scales in the universe: from finding exoplanets in trillions of sky pixels, to finding machine learning inspired solutions to the quantum many-body problem, to detecting anomalies in event streams from the Large Hadron Collider. Tackling a number of associated data-intensive tasks including, but not …

            Organizátor

            N2
            N2

            NIPS 2019

            Konto · 963 Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            O organizátorovi (NIPS 2019)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            MidiMe: Personalizing a MusicVAE model with user data
            11:22

            MidiMe: Personalizing a MusicVAE model with user data

            Monica Dinculescu

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Co-Design Approaches for Efficient Deep Neural Networks: Challenges and Opportunities:
            51:09

            Co-Design Approaches for Efficient Deep Neural Networks: Challenges and Opportunities:

            Vivienne Sze

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Contributed talk:  Functional Annotation of Human Cognitive States using Graph Convolution Networks
            12:52

            Contributed talk: Functional Annotation of Human Cognitive States using Graph Convolution Networks

            Yu Zhang

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            NeurIPS RL Competitions Results Presentations: Robot open-Ended Autonomous Learning (REAL)
            13:43

            NeurIPS RL Competitions Results Presentations: Robot open-Ended Autonomous Learning (REAL)

            Emilio Cartoni

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Paper Session #2
            51:05

            Paper Session #2

            Alaa Saade, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Solutions - Discussion Panel
            1:25:07

            Solutions - Discussion Panel

            Brandeis Marshall, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NIPS 2019