Next
Learning DAGs and Trees with Box Embeddings and Hyperbolic Embeddings
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Open Challenges - Spotlight Presentations
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-007-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-007-alpha.b-cdn.net
      • sl-yoda-v3-stream-007-beta.b-cdn.net
      • 1211500432.rsc.cdn77.org
      • 1991924839.rsc.cdn77.org
      • Subtitles
      • Off
      • English (auto-generated)
      • English (United States)
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Open Challenges - Spotlight Presentations
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Open Challenges - Spotlight Presentations

            Dez 13, 2019

            Sprecher:innen

            AK

            Arinbjörn Kolbeinsson

            Sprecher:in · 2 Follower:innen

            CTD

            Chi Thang Duong

            Sprecher:in · 0 Follower:innen

            KT

            Komal Teru

            Sprecher:in · 0 Follower:innen

            Über

            Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial if we want systems that can learn, reason, and generalize from this kind of data. Furthermore, graphs can be seen as a natural generalization of simpler kinds of structured data (such as images), and therefore, they represent a natural avenue for the next breakthroughs in machine lear…

            Organisator

            N2
            N2

            NIPS 2019

            Konto · 964 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über NIPS 2019

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Invited talk: Circuit Languages at the Confluence of Learning and Reasoning
            32:54

            Invited talk: Circuit Languages at the Confluence of Learning and Reasoning

            Guy Van den Broeck

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Convergence of GTD( λ ) with General   λ
            37:07

            On the Convergence of GTD( λ ) with General λ

            Huizhen Yu

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk: Robust information bottleneck
            29:03

            Invited Talk: Robust information bottleneck

            Varun Jog

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Molecules and Genomes
            1:12:53

            Molecules and Genomes

            Alan Aspuru Guzik, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ​Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity
            11:15

            ​Learning to Control Self-Assembling Morphologies: A Study of Generalization via Modularity

            Chris Lu, …

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited talk – When Text Mining Isn't a Piece of Cake
            33:21

            Invited talk – When Text Mining Isn't a Piece of Cake

            Xanda Schofield

            N2
            N2
            NIPS 2019 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NIPS 2019 folgen