Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Best Arm Identification for Cascading Bandits in the Fixed Confidence Setting

            Jul 12, 2020

            Sprecher:innen

            ZZ

            Zixin Zhong

            Sprecher:in · 0 Follower:innen

            WCC

            Wang Chi Cheung

            Sprecher:in · 0 Follower:innen

            VYFT

            Vincent Y. F. Tan

            Sprecher:in · 0 Follower:innen

            Über

            We design and analyze CascadeBAI, an algorithm for finding the best set of K items, also called an arm, within the framework of cascading bandits. An upper bound on the time complexity of CascadeBAI is derived by overcoming a crucial analytical challenge, namely, that of probabilistically estimating the amount of available feedback at each step. To do so, we define a new class of random variables (r.v.'s) which we term as left-sided sub-Gaussian r.v.'s; these are r.v.'s whose cumulant generating…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Learning From Irregularly-Sampled Time Series: A Missing Data Perspective
            14:25

            Learning From Irregularly-Sampled Time Series: A Missing Data Perspective

            Benjamin Marlin, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fighting Copycat Agents in Behavioral Cloning from Multiple Observations
            05:28

            Fighting Copycat Agents in Behavioral Cloning from Multiple Observations

            Chuan Wen, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks
            03:27

            Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks

            Gerrit Schoettler, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Manifold Identification for Ultimately Communication-Efficient Distributed Optimization
            15:12

            Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

            Yu-Sheng Li, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            1min Intro

            Placeholder AutoMLWS20

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Logarithmic Regret for Online Control
            14:47

            Logarithmic Regret for Online Control

            Dylan J. Foster, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen