Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            On Differentially Private Stochastic Convex Optimization with Heavy-tailed Data

            Jul 12, 2020

            Sprecher:innen

            DW

            Di Wang

            Sprecher:in · 0 Follower:innen

            HX

            Hanshen Xiao

            Sprecher:in · 0 Follower:innen

            JX

            Jinhui Xu

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we consider the problem of designing Differentially Private (DP) algorithms for Stochastic Convex Optimization (SCO) on heavy-tailed data. The irregularity of such data violates some key assumptions used in almost all existing DP-SCO and DP-ERM methods, resulting in failure to provide the DP guarantees. To better understand this type of challenges, we provide in this paper a comprehensive study of DP-SCO under various settings. First, we consider the case where the loss function i…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Mathematik

            Kategorie · 2,4k Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Decentralised Learning with Random Features and Distributed Gradient Descent
            09:49

            Decentralised Learning with Random Features and Distributed Gradient Descent

            Dominic Richards, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM
            13:01

            Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM

            Kunal Menda, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DeepKinZero: Zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases
            05:10

            DeepKinZero: Zero-shot learning for predicting kinase-phosphosite associations involving understudied kinases

            Iman Deznabi, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Auto-GAN-Distiller: Searching to Compress Generative Adversarial Networks
            12:17

            Auto-GAN-Distiller: Searching to Compress Generative Adversarial Networks

            Yonggan Fu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Continuous Graph Flow
            04:29

            Continuous Graph Flow

            Zhiwei Deng, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Large Scale Deep Learning: Trends and Optimization Challenges
            11:17

            Large Scale Deep Learning: Trends and Optimization Challenges

            Boris Ginsburg

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen