Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Striving for simplicity and performance in off-policy DRL: Output Normalization and Non-Uniform Sampling
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Striving for simplicity and performance in off-policy DRL: Output Normalization and Non-Uniform Sampling
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Striving for simplicity and performance in off-policy DRL: Output Normalization and Non-Uniform Sampling

            Jul 12, 2020

            Sprecher:innen

            CW

            Che Wang

            Sprecher:in · 0 Follower:innen

            YW

            Yanqiu Wu

            Sprecher:in · 0 Follower:innen

            QV

            Quan Vuong

            Sprecher:in · 0 Follower:innen

            Über

            We aim to develop off-policy DRL algorithms that not only exceed state-of-the-art performance but are also simple and minimalistic. For standard continuous control benchmarks, Soft Actor Critic (SAC), which employs entropy maximization, currently provides state-of-the-art performance. We first demonstrate that the entropy term in SAC addresses action saturation due to the bounded nature of the action spaces. With this insight, we propose a streamlined algorithm with a simple normalization scheme…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Software und Programmierung

            Kategorie · 1k Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Rapid policy updating in human physical construction
            05:18

            Rapid policy updating in human physical construction

            Will McCarthy, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adversarial Nonnegative Matrix Factorization
            10:36

            Adversarial Nonnegative Matrix Factorization

            Lei Luo, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study
            15:13

            Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study

            Tanner Fiez, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Graphical Models based Solutions for Missing Data Problems
            29:18

            Graphical Models based Solutions for Missing Data Problems

            Karthika Mohan

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster #59

            Afroza Ali

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Black-Box Methods for Restoring Monotonicity
            15:40

            Black-Box Methods for Restoring Monotonicity

            Evangelia Gergatsouli, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen