Leveraging Frequency Analysis for Deep Fake Image Recognition

Jul 12, 2020

Speakers

About

Deep neural networks can generate images that are astonishingly realistic, so much so that it is often hard for untrained humans to distinguish them from actual photos. These achievements have been largely made possible by Generative Adversarial Networks (GANs). While these deep fake images have been thoroughly investigated in the image domain - a classical approach from the area of image forensics - an analysis in the frequency domain has been missing. This paper addresses this shortcoming and our results reveal, that in frequency space, GAN-generated images exhibit severe artifacts that can be easily identified. We perform a comprehensive analysis, showing that these artifacts are consistent across different neural network architectures, data sets, and resolutions. In a further investigation, we demonstrate that these artifacts are caused by upsampling operations found in all current GAN architectures, indicating a structural and fundamental problem in the way images are generated via GANs. Based on this analysis, we demonstrate how the frequency representation can be used to automatically identify deep fake images, surpassing state-of-the-art methods.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker