Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Frequency Bias in Neural Networks for Input of Non-Uniform Density
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Frequency Bias in Neural Networks for Input of Non-Uniform Density
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Frequency Bias in Neural Networks for Input of Non-Uniform Density

            Jul 12, 2020

            Speakers

            RB

            Ronen Basri

            Řečník · 0 sledujících

            MG

            Meirav Galun

            Řečník · 0 sledujících

            AG

            Amnon Geifman

            Řečník · 0 sledujících

            About

            Recent works have partly attributed the generalization ability of over-parameterized neural networks to frequency bias – networks trained with gradient descent on data drawn from a uniform distribution find a low frequency fit before high frequency ones. As realistic training sets are not drawn from a uniform distribution, we here use the Neural Tangent Kernel (NTK) model to explore the effect of variable density on training dynamics. Our results, which combine analytic and empirical observation…

            Organizer

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Categories

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Closing remarks
            02:21

            Closing remarks

            Zelda Mariet, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            What is my data worth? Towards a Principled and Practical Approach for Data Valuation
            24:47

            What is my data worth? Towards a Principled and Practical Approach for Data Valuation

            Ruoxi Jia, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            BoXHED: Boosted eXact Hazard Estimator with Dynamic covariates
            14:28

            BoXHED: Boosted eXact Hazard Estimator with Dynamic covariates

            Xiaochen Wang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning
            14:17

            Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

            Alberto Maria Metelli, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Reliable Fidelity and Diversity Metrics for Generative Models
            15:44

            Reliable Fidelity and Diversity Metrics for Generative Models

            Seong Joon Oh, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Learning Action Priors for Visuomotor transfer
            04:22

            Learning Action Priors for Visuomotor transfer

            Anurag Ajay

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow ICML 2020