Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Variational Label Enhancement
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Variational Label Enhancement
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Variational Label Enhancement

            12. července 2020

            Řečníci

            NX

            Ning Xu

            Sprecher:in · 0 Follower:innen

            YL

            Yun-Peng Liu

            Sprecher:in · 0 Follower:innen

            JS

            Jun Shu

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Label distribution covers a certain number of labels, representing the degree to which each label describes the instance. The learning process on the instances labeled by label distributions is called label distribution learning (LDL). Unfortunately, many training sets only contain simple logical labels rather than label distributions due to the difficulty of obtaining the label distributions directly. To solve this problem, we consider the label distributions as the latent vectors and infer the…

            Organizátor

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            On using Focal Loss for Neural Network Calibration
            05:44

            On using Focal Loss for Neural Network Calibration

            Jishnu Mukhoti, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk 3 - Q&A

            Sungjin Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Frequent Subgraph Mining by Walking in Order Embedding Space
            17:16

            Frequent Subgraph Mining by Walking in Order Embedding Space

            Rex Ying, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Online Learning with Imperfect Hints
            13:17

            Online Learning with Imperfect Hints

            Aditya Bhaskara, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spotlights Set 1

            Workshop CompBio

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            AutoDL: Automated and Interpretable Deep Learning
            1:31:18

            AutoDL: Automated and Interpretable Deep Learning

            Haoyi Xiong

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020