Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Optimizing for the Future in Non-Stationary MDPs
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Optimizing for the Future in Non-Stationary MDPs
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Optimizing for the Future in Non-Stationary MDPs

            Jul 12, 2020

            Sprecher:innen

            YC

            Yash Chandak

            Sprecher:in · 0 Follower:innen

            GT

            Georgios Theocharous

            Sprecher:in · 0 Follower:innen

            SS

            Shiv Shankar

            Sprecher:in · 0 Follower:innen

            Über

            Most reinforcement learning methods are based upon the key assumption that the transition dynamics and reward functions are fixed, that is, the underlying Markov decision process (MDP) is stationary. However, in many practical real-world applications, this assumption is clearly violated. We discuss how current methods can have inherent limitations for non-stationary MDPs, and therefore searching a policy that is good for the future, unknown MDP, requires rethinking the optimization paradigm. To…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            App- und Spieleentwicklung

            Kategorie · 954 Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Panel #1
            52:37

            Panel #1

            Deborah Raji, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Frustratingly Simple Few-Shot Object Detection
            14:50

            Frustratingly Simple Few-Shot Object Detection

            Xin Wang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improved Optimistic Algorithms for Logistic Bandits
            15:22

            Improved Optimistic Algorithms for Logistic Bandits

            Louis Faury, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Stochastic Optimization for Regularized Wasserstein Estimators
            15:08

            Stochastic Optimization for Regularized Wasserstein Estimators

            Marin Ballu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle
            13:32

            Understanding the Impact of Model Incoherence on Convergence of Incremental SGD with Random Reshuffle

            Shaocong Ma, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM
            13:01

            Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM

            Kunal Menda, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen