Online Continual Compression with Adaptive Quantization Modules

Jul 12, 2020

Speakers

About

We introduce and study the problem of Online Continual Compression, where one attempts to simultaneously learn to compress and store a representative dataset from a non i.i.d data stream, while only observing each sample once. A naive application of auto-encoder in this setting encounters a major challenge: representations derived from earlier encoder states must be usable by later decoder states. We show how to use discrete auto-encoders to effectively address this challenge and introduce Adaptive Quantization Modules (AQM) to control variation in the compression ability of the module at any given stage of learning. This enables selecting an appropriate compression for incoming samples, while taking into account overall memory constraints and current progress of the learned compression. Unlike previous methods, our approach does not require any pretraining, even on challenging datasets. We show that using AQM to replace standard episodic memory in continual learning settings leads to significant gains on continual learning benchmarks with images, LiDAR, and reinforcement learning agents.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker