RIFLE: Backpropagation in Depth for Deep Transfer Learning through Re-Initializing the Fully-connected LayEr

Jul 12, 2020

Speakers

About

Fine-tuning the deep convolution neural network (CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task. While the accuracy could be largely improved even when the training dataset is small, the transfer learning outcome is similar with the pre-trained one with closed CNN weights[17], as the backpropagation here brings less updates to deeper CNN layers. In this work, we propose RIFLE - a simple yet effective strategy that deepens backpropagation in transfer learning settings, through periodically ReInitializing the Fully-connected LayEr with random scratch during the fine-tuning procedure. RIFLE brings significant perturbation to the backpropagation process and leads to deep CNN weights update, while the affects of perturbation can be easily converged throughout the overall learning procedure. The experiments show that the use of RIFLE significantly improves deep transfer learning accuracy on a wide range of datasets. It outperforms known tricks for the similar purpose, such as dropout, dropconnect, stochastic depth, and cyclic learning rate, under the same settings with 0.5

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker