Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study

Jul 12, 2020



Contemporary work on learning in continuous games has commonly overlooked the hierarchical decision-making structure present in machine learning problems formulated as games, instead treating them as simultaneous play games and adopting the Nash equilibrium solution concept. We deviate from this paradigm and provide a comprehensive study of learning in Stackelberg games. This work provides insights into the optimization landscape of zero-sum games by establishing connections between Nash and Stackelberg equilibria along with the limit points of simultaneous gradient descent. We derive novel gradient-based learning dynamics emulating the natural structure of a Stackelberg game using the Implicit Function Theorem and provide convergence analysis for deterministic and stochastic updates for zero-sum and general-sum games. Notably, in zero-sum games using deterministic updates, we show the only critical points the dynamics converge to are Stackelberg equilibria and provide a local convergence rate. Empirically, the proposed learning dynamics mitigate rotational behavior and exhibit benefits for training Generative Adversarial Networks compared to gradient play.



About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%


Recommended Videos

Presentations on similar topic, category or speaker