Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Polynomial Tensor Sketch for Element-wise Matrix Function
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Polynomial Tensor Sketch for Element-wise Matrix Function
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Polynomial Tensor Sketch for Element-wise Matrix Function

            Jul 12, 2020

            Sprecher:innen

            IH

            Insu Han

            Sprecher:in · 0 Follower:innen

            HA

            Haim Avron

            Sprecher:in · 0 Follower:innen

            JS

            Jinwoo Shin

            Sprecher:in · 2 Follower:innen

            Über

            This paper studies how to sketch element-wise functions of low-rank matrices. Formally, given low-rank matrix A = [Aij] and scalar non-linear function f, we aim for finding an approximated low-rank representation of the (possibly high-rank) matrix [f(Aij)]. To this end, we propose an efficient sketching-based algorithm whose complexity is significantly lower than the number of entries of A, i.e., it runs without accessing all entries of [f(Aij)] explicitly. The main idea underlying our method is…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Differentiating Through the Fréchet Mean
            12:10

            Differentiating Through the Fréchet Mean

            Aaron Lou, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Provably Efficient Online Hyperparameter Optimization via Population-Based Bandits
            23:21

            Provably Efficient Online Hyperparameter Optimization via Population-Based Bandits

            Jack Parker-Holder, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk 1 - Q&A

            Sungjin Ahn, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spectral-designed Depthwise Separable Graph Neural Networks
            06:47

            Spectral-designed Depthwise Separable Graph Neural Networks

            Renton Guillaume, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Min-Max Optimization without Gradients: Convergence and Applications
            11:59

            Min-Max Optimization without Gradients: Convergence and Applications

            Sijia Liu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Likelihood-free MCMC with Amortized Approximate Likelihood-Ratios
            11:32

            Likelihood-free MCMC with Amortized Approximate Likelihood-Ratios

            Joeri Hermans, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen