Adversarial Learning Bounds for Linear Classes and Neural Nets

Jul 12, 2020

Speakers

About

Adversarial or test time robustness measures the susceptibility of a classifier to perturbations to the test input. While there has been a flurry of recent work on designing defenses against such perturbations, the theory of adversarial robustness is not well understood. In order to make progress on this, we focus on the problem of understanding generalization in adversarial settings, via the lens of Rademacher complexity. We give upper and lower bounds for the adversarial empirical Rademacher complexity of linear hypotheses with adversarial perturbations measured in l_r-norm for an arbitrary r ≥ 1. This generalizes the recent result of Yin et al. <cit.> that studies the case of r = ∞, and provides a finer analysis of the dependence on the input dimensionality as compared to the recent work of Khim and Loh <cit.> on linear hypothesis classes and additionally provides matching lower bounds. We then extend our analysis to provide Rademacher complexity lower and upper bounds for a single ReLU unit. Finally, we give adversarial Rademacher complexity bounds for feed-forward neural networks with one hidden layer. Unlike previous works we directly provide bounds on the adversarial Rademacher complexity of the given network, as opposed to a bound on a surrogate. A by-product of our analysis also leads to tighter bounds for the Rademacher complexity of linear hypotheses, for which we give a detailed analysis and present a comparison with existing bounds.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker