Regularized Optimal Transport is Ground Cost Adversarial

Jul 12, 2020

Speakers

About

Regularizing Wasserstein distances has proved to be the key in the recent advances of optimal transport (OT) in machine learning. Most prominent is the entropic regularization of OT, which not only allows for fast computations and differentiation using Sinkhorn algorithm, but also improves stability with respect to data and accuracy in many numerical experiments. Theoretical understanding of these benefits remains unclear, although recent statistical works have shown that entropy-regularized OT mitigates classical OT's curse of dimensionality. In this paper, we adopt a more geometrical point of view, and show using Fenchel duality that any convex regularization of OT can be interpreted as ground cost adversarial. This incidentally gives access to a robust dissimilarity measure on the ground space, which can in turn be used in other applications. We propose algorithms to compute this robust cost, and illustrate the interest of this approach empirically.

Organizer

Categories

About ICML 2020

The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

Like the format? Trust SlidesLive to capture your next event!

Professional recording and live streaming, delivered globally.

Sharing

Recommended Videos

Presentations on similar topic, category or speaker

Interested in talks like this? Follow ICML 2020