Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Angular Visual Hardness
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Angular Visual Hardness
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Angular Visual Hardness

            Jul 12, 2020

            Sprecher:innen

            BC

            Beidi Chen

            Sprecher:in · 3 Follower:innen

            WL

            Weiyang Liu

            Sprecher:in · 0 Follower:innen

            ZY

            Zhiding Yu

            Sprecher:in · 0 Follower:innen

            Über

            Recent convolutional neural networks (CNNs) have led to impressive performance but often suffer from poor calibration. They tend to be overconfident, with the model confidence not always reflecting the underlying true ambiguity and hardness. In this paper, we propose angular visual hardness (AVH), a score given by the normalized angular distance between the sample feature embedding and the target classifier to measure sample hardness. We validate this score with in-depth and extensive scientific…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Ridge Riding: Finding diverse solutions by following eigenvectors of the Hessian
            10:53

            Ridge Riding: Finding diverse solutions by following eigenvectors of the Hessian

            Jack Parker-Holder, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Attentive Grouping and GNNs for Object-Centric Learning
            42:30

            Attentive Grouping and GNNs for Object-Centric Learning

            Thomas Kipf

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Challenges & Opportunities in Lifelong Reinforcement Learning
            50:18

            Challenges & Opportunities in Lifelong Reinforcement Learning

            Katja Hofmann, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast computation of Nash Equilibria in Imperfect Information Games
            08:37

            Fast computation of Nash Equilibria in Imperfect Information Games

            Remi Munos, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited talk: Total Variation Regularization
            32:50

            Invited talk: Total Variation Regularization

            Sara van de Geer

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Projective Preferential Bayesian Optimization
            12:52

            Projective Preferential Bayesian Optimization

            Petrus Mikkola, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen