Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Estimating Q(s,s') with Deep Deterministic Dynamics Gradients
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Estimating Q(s,s') with Deep Deterministic Dynamics Gradients
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Estimating Q(s,s') with Deep Deterministic Dynamics Gradients

            Jul 12, 2020

            Sprecher:innen

            AE

            Ashley Edwards

            Sprecher:in · 0 Follower:innen

            HS

            Himanshu Sahni

            Sprecher:in · 0 Follower:innen

            RL

            Rosanne Liu

            Sprecher:in · 0 Follower:innen

            Über

            In this paper, we introduce a novel form of a value function, Q(s, s'), that expresses the utility of transitioning from a state s to a neighboring state s' and then acting optimally thereafter. In order to derive an optimal policy, we develop a novel forward dynamics model that learns to make next-state predictions that maximize Q(s,s'). This formulation decouples actions from values while still learning off-policy. We highlight the benefits of this approach in terms of value function transfer,…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            Mathematik

            Kategorie · 2,4k Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Provably Efficient Exploration in Policy Optimization
            11:20

            Provably Efficient Exploration in Policy Optimization

            Qi Cai, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Global Concavity and Optimization in a Class of Dynamic Discrete Choice Models
            14:33

            Global Concavity and Optimization in a Class of Dynamic Discrete Choice Models

            Yiding Feng, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Poster presentation 36

            Invertible Workshop Innf

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zeno++: Robust Fully Asynchronous SGD
            11:55

            Zeno++: Robust Fully Asynchronous SGD

            Cong Xie, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Benchmarking Graph Neural Networks
            32:40

            Benchmarking Graph Neural Networks

            Xavier Bresson, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Conditional gradient methods for stochastically constrained convex minimization
            14:50

            Conditional gradient methods for stochastically constrained convex minimization

            Maria-Luiza Vladarean, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen