Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Decision Trees for Decision-Making under the Predict-then-Optimize Framework
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Decision Trees for Decision-Making under the Predict-then-Optimize Framework
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Decision Trees for Decision-Making under the Predict-then-Optimize Framework

            12. července 2020

            Řečníci

            AE

            Adam Elmachtoub

            Sprecher:in · 0 Follower:innen

            RM

            Ryan McNellis

            Sprecher:in · 0 Follower:innen

            JL

            Jason Liang

            Sprecher:in · 0 Follower:innen

            O prezentaci

            We consider the use of decision trees for decision-making problems under the predict-then-optimize framework. That is, we would like to first use a decision tree to predict unknown input parameters of an optimization problem, and then make decisions by solving the optimization problem using the predicted parameters. A natural loss function in this framework is to measure the suboptimality of the decisions induced by the predicted input parameters, as opposed to measuring loss using input paramet…

            Organizátor

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Normalisr: inferring single-cell differential and co-expression with linear association testing
            05:19

            Normalisr: inferring single-cell differential and co-expression with linear association testing

            Lingfei Wang

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Invited Talk 8

            Shanghang Zhang

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            RXNMapper – AI Explainability 360 - Command Line AI – COVID-19 Molecule Explorer
            45:18

            RXNMapper – AI Explainability 360 - Command Line AI – COVID-19 Molecule Explorer

            Philippe Schwaller, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions
            12:28

            Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions

            Prashanth L.A., …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Super-efficiency of automatic differentiation for functions defined as a minimum
            14:45

            Super-efficiency of automatic differentiation for functions defined as a minimum

            Pierre Ablin, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Discrete Structured Representations by Adversarially Maximizing Mutual Information
            15:02

            Learning Discrete Structured Representations by Adversarially Maximizing Mutual Information

            Karl Stratos, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020