Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Variational Bayesian Quantization
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-001-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-001-alpha.b-cdn.net
      • sl-yoda-v2-stream-001-beta.b-cdn.net
      • 1824830694.rsc.cdn77.org
      • 1979322955.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Variational Bayesian Quantization
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Variational Bayesian Quantization

            12. července 2020

            Řečníci

            YY

            Yibo Yang

            Speaker · 0 followers

            RB

            Robert Bamler

            Speaker · 1 follower

            SM

            Stephan Mandt

            Speaker · 1 follower

            O prezentaci

            Deep Bayesian latent variable models have enabled new approaches to both model and data compression. Here, we propose a new algorithm for compressing latent representations in deep probabilistic models, such as variational autoencoders, in post-processing. The approach thus separates model design and training from the compression task. Our algorithm generalizes arithmetic coding to the continuous domain, using adaptive discretization accuracy that exploits estimates of posterior uncertainty. A c…

            Organizátor

            I2
            I2

            ICML 2020

            Account · 2.7k followers

            Kategorie

            Mathematics

            Category · 2.4k presentations

            AI & Data Science

            Category · 10.8k presentations

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Informative Dropout for Robust Representation Learning: A Shape-bias Perspective
            14:57

            Informative Dropout for Robust Representation Learning: A Shape-bias Perspective

            Baifeng Shi, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Bayesian Deep Learning and a Probabilistic Perspective of Model Construction - Part 4
            1:06:54

            Bayesian Deep Learning and a Probabilistic Perspective of Model Construction - Part 4

            Andrew Gordon Wilson

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data
            07:24

            Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

            Felipe Petroski Such, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            ML Models in Production
            10:01

            ML Models in Production

            Jonathan Hseu

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Test-Time Training with Self-Supervision for Generalization under Distribution Shifts
            15:18

            Test-Time Training with Self-Supervision for Generalization under Distribution Shifts

            YuSun, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            On Convergence-Diagnostic based Step Sizes for Stochastic Gradient Descent
            15:19

            On Convergence-Diagnostic based Step Sizes for Stochastic Gradient Descent

            Scott Pesme, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020