Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: DROCC: Deep Robust One Class Classification
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            DROCC: Deep Robust One Class Classification
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            DROCC: Deep Robust One Class Classification

            12. července 2020

            Řečníci

            SG

            Sachin Goyal

            Speaker · 0 followers

            AR

            Aditi Raghunathan

            Speaker · 0 followers

            MJ

            Moksh Jain

            Speaker · 1 follower

            O prezentaci

            Classical approaches for one-class problems such as one-class SVM (Schölkopf et al., 1999) and isolation forest (Liu et al., 2008) require careful feature engineering when applied to structured domains like images. To alleviate this concern, state-of-the-art methods like DeepSVDD (Ruff et al., 2018) consider the natural alternative of minimizing a classical one -class loss applied to the learned final layer representations. However, such an approach suffers from the fundamental drawback that a r…

            Organizátor

            I2
            I2

            ICML 2020

            Account · 2.6k followers

            Kategorie

            Education & Teaching

            Category · 357 presentations

            AI & Data Science

            Category · 10.8k presentations

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Concept Bottleneck Models
            14:56

            Concept Bottleneck Models

            Pang Wei Koh, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 1 viewers voted for saving the presentation to eternal vault which is 0.1%

            Amortized Population Gibbs Samplers with Neural Sufficient Statistics
            13:51

            Amortized Population Gibbs Samplers with Neural Sufficient Statistics

            Hao Wu, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Model Fusion with Kullback--Leibler Divergence
            09:58

            Model Fusion with Kullback--Leibler Divergence

            Sebastian Claici, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Understanding Self-Training for Gradual Domain Adaptation
            15:17

            Understanding Self-Training for Gradual Domain Adaptation

            Ananya Kumar, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Differentiating Through the Fréchet Mean
            12:10

            Differentiating Through the Fréchet Mean

            Aaron Lou, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Duality in vv-RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
            14:35

            Duality in vv-RKHSs with Infinite Dimensional Outputs: Application to Robust Losses

            Pierre Laforgue, …

            I2
            I2
            ICML 2020 5 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020