Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: PolyGen: An Autoregressive Generative Model of 3D Meshes
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            PolyGen: An Autoregressive Generative Model of 3D Meshes
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            PolyGen: An Autoregressive Generative Model of 3D Meshes

            Jul 12, 2020

            Sprecher:innen

            CN

            Charlie Nash

            Sprecher:in · 0 Follower:innen

            YG

            Yaroslav Ganin

            Sprecher:in · 0 Follower:innen

            SMAE

            S. M. Ali Eslami

            Sprecher:in · 1 Follower:in

            Über

            Polygon meshes are an efficient representation of 3D geometry, and are of central importance in computer graphics, robotics and games development. Existing learning-based approaches have avoided the challenges of working with 3D meshes, instead using alternative object representations that are more compatible with neural architectures and training approaches. We present an approach which models the mesh directly, predicting mesh vertices and faces sequentially using a Transformer-based architect…

            Organisator

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Few-shot Out-of-Distribution Detection
            04:54

            Few-shot Out-of-Distribution Detection

            Paul Vicol, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Serverless inferencing on Kubernetes
            10:09

            Serverless inferencing on Kubernetes

            Clive Cox

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Geometric Approach to Archetypal Analysis via Sparse Projections
            13:36

            A Geometric Approach to Archetypal Analysis via Sparse Projections

            Vinayak Abrol, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            1min Intro

            Placeholder AutoMLWS20

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Linear bandits with Stochastic Delayed Feedback
            13:25

            Linear bandits with Stochastic Delayed Feedback

            Claire Vernade, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Human and Machine Learning for Assistive Autonomy
            2:03:46

            Human and Machine Learning for Assistive Autonomy

            Brenna Argall

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen