Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Get Rid of Suspended Animation Problem: Deep Diffusion Neural Network on Graph Semi-Supervised Classification
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Get Rid of Suspended Animation Problem: Deep Diffusion Neural Network on Graph Semi-Supervised Classification
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Get Rid of Suspended Animation Problem: Deep Diffusion Neural Network on Graph Semi-Supervised Classification

            17. července 2020

            Řečníci

            JZ

            Jiawei Zhang

            Řečník · 0 sledujících

            O prezentaci

            Existing graph neural networks may suffer from the “suspended animation problem” when the model architecture goes deep. Meanwhile, for some graph learning scenarios, e.g., nodes with text/image attributes or graphs with long- distance node correlations, deep graph neural networks will be necessary for effective graph representation learning. In this paper, we propose a new graph neural network, namely DIFNET (Graph Diffusive Neural Network), for deep graph representation learning and node classi…

            Organizátor

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorie

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
            15:56

            Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates

            Yang Liu, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Universal Equivariant Multilayer Perceptrons
            15:21

            Universal Equivariant Multilayer Perceptrons

            Siamak Ravanbakhsh

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Born-Again Tree Ensembles
            15:47

            Born-Again Tree Ensembles

            Thibaut Vidal, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Robust model training and generalisation with Studentising flows
            05:08

            Robust model training and generalisation with Studentising flows

            Simon Alexanderson, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text Generation
            13:50

            On the Relation between Quality-Diversity Evaluation and Distribution-Fitting Goal in Text Generation

            Jianing Li, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Countering Language Drift with Seeded Iterated Learning
            14:24

            Countering Language Drift with Seeded Iterated Learning

            Yuchen Lu, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Zajímají Vás podobná videa? Sledujte ICML 2020