Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Learning to Continually Learn
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-005-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-005-alpha.b-cdn.net
      • sl-yoda-v2-stream-005-beta.b-cdn.net
      • 1034628162.rsc.cdn77.org
      • 1409346856.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Learning to Continually Learn
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Learning to Continually Learn

            12. července 2020

            Řečníci

            JC

            Jeff Clune

            Sprecher:in · 13 Follower:innen

            O prezentaci

            A dominant trend in machine learning is that hand-designed pipelines are replaced by higher-performing learned pipelines once sufficient compute and data are available. I argue that trend will apply to machine learning itself, and thus that the fastest path to truly powerful AI is to create AI-generating algorithms (AI-GAs) that on their own learn to solve the hardest AI problems. This paradigm is an all-in bet on meta-learning. After introducing these ideas, the talk focuses on one example of t…

            Organizátor

            I2
            I2

            ICML 2020

            Konto · 2,7k Follower:innen

            Kategorie

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            End-to-End ASR: from Supervised to Semi-Supervised Learning with Modern Architectures
            15:13

            End-to-End ASR: from Supervised to Semi-Supervised Learning with Modern Architectures

            Gabriel Synnaeve, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Combining FiLM Layers with Variational Continual Learning
            14:16

            Combining FiLM Layers with Variational Continual Learning

            Noel Loo, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adaptive Droplet Routing in Digital Microfluidic Biochips Using Deep Reinforcement Learning
            14:58

            Adaptive Droplet Routing in Digital Microfluidic Biochips Using Deep Reinforcement Learning

            Tung-Che Liang, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Meta-Learning Approach for Image Classification Architecture Recommendation
            04:35

            A Meta-Learning Approach for Image Classification Architecture Recommendation

            Loren Tsahalon, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
            12:36

            Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation

            Konstantinos Pitas

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Deep Graph Contrastive Representation Learning
            04:44

            Deep Graph Contrastive Representation Learning

            Yanqiao Zhu, …

            I2
            I2
            ICML 2020 5 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte ICML 2020