Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Monitoring and explainability of models in production
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Subtitles
      • Off
      • en
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Monitoring and explainability of models in production
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Monitoring and explainability of models in production

            Jul 17, 2020

            Sprecher:innen

            JK

            Janis Klaise

            Řečník · 0 sledujících

            AVL

            Arnaud Van Looveren

            Řečník · 0 sledujících

            CC

            Clive Cox

            Řečník · 0 sledujících

            Über

            The machine learning lifecycle extends beyond the deployment stage. Monitoring deployed models is crucial for continued provision of high quality machine learning enabled services. Key areas include model performance and data monitoring, detecting outliers and data drift using statistical techniques, and providing explanations of historic predictions. We discuss the challenges to successful implementation of solutions in each of these areas with some recent examples of production ready solutions…

            Organisator

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorien

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            Über ICML 2020

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Q&A session #1
            35:44

            Q&A session #1

            Amir-Hossein Karimi, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Self-Supervised Video Models from Sound and Speech
            21:43

            Self-Supervised Video Models from Sound and Speech

            Lorenzo Torresani

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Curvature-guided Pruning of High-performance Neural Networks Using Ricci Flow
            01:16

            Curvature-guided Pruning of High-performance Neural Networks Using Ricci Flow

            Samuel Glass, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On a Projective Ensemble Approach to Two Sample Test for Equality of Distributions
            10:45

            On a Projective Ensemble Approach to Two Sample Test for Equality of Distributions

            Zhimei Li, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Obtaining Adjustable Regularization for Free via Iterate Averaging
            12:06

            Obtaining Adjustable Regularization for Free via Iterate Averaging

            Jingfeng Wu, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            GraphNets with Spectral Message Passing
            05:00

            GraphNets with Spectral Message Passing

            Kimberly Stachenfeld, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interessiert an Vorträgen wie diesem? ICML 2020 folgen