Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Monitoring and explainability of models in production
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-004-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-004-alpha.b-cdn.net
      • sl-yoda-v2-stream-004-beta.b-cdn.net
      • 1685195716.rsc.cdn77.org
      • 1239898752.rsc.cdn77.org
      • Titulky
      • Off
      • en
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Monitoring and explainability of models in production
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Monitoring and explainability of models in production

            17. července 2020

            Řečníci

            JK

            Janis Klaise

            Řečník · 0 sledujících

            AVL

            Arnaud Van Looveren

            Řečník · 0 sledujících

            CC

            Clive Cox

            Řečník · 0 sledujících

            O prezentaci

            The machine learning lifecycle extends beyond the deployment stage. Monitoring deployed models is crucial for continued provision of high quality machine learning enabled services. Key areas include model performance and data monitoring, detecting outliers and data drift using statistical techniques, and providing explanations of historic predictions. We discuss the challenges to successful implementation of solutions in each of these areas with some recent examples of production ready solutions…

            Organizátor

            I2
            I2

            ICML 2020

            Účet · 2,7k sledujících

            Kategorie

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            O organizátorovi (ICML 2020)

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Inverse Active Sensing: Modeling and Understanding Timely Decision-Making
            12:45

            Inverse Active Sensing: Modeling and Understanding Timely Decision-Making

            Daniel Jarrett, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Opening remarks
            11:33

            Opening remarks

            Zelda Mariet, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Continuous-time Lower Bounds for Gradient-based Algorithms
            15:46

            Continuous-time Lower Bounds for Gradient-based Algorithms

            Michael Muehlebach, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Towards Understanding the Dynamics of the First-Order Adversaries
            11:04

            Towards Understanding the Dynamics of the First-Order Adversaries

            Zhun Deng, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Planning to Explore via Self-Supervised World Models
            10:51

            Planning to Explore via Self-Supervised World Models

            Ramanan Sekar, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Bias-Variance Tradeoff?
            12:53

            Bias-Variance Tradeoff?

            Zitong Yang, …

            I2
            I2
            ICML 2020 5 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Zajímají Vás podobná videa? Sledujte ICML 2020