Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: A Single Recipe for Online Submodular Maximization with Adversarial or Stochastic Constraints
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            A Single Recipe for Online Submodular Maximization with Adversarial or Stochastic Constraints
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            A Single Recipe for Online Submodular Maximization with Adversarial or Stochastic Constraints

            Dez 6, 2020

            Sprecher:innen

            OS

            Omid Sadeghi

            Sprecher:in · 0 Follower:innen

            PR

            Prasanna Raut

            Sprecher:in · 0 Follower:innen

            MF

            Maryam Fazel

            Sprecher:in · 0 Follower:innen

            Über

            Spotlight

            Organisator

            N2
            N2

            NeurIPS 2020

            Konto · 11,7k Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Mathematik

            Kategorie · 2,4k Präsentationen

            Über NeurIPS 2020

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Effective Diversity in Population Based Reinforcement Learning
            09:48

            Effective Diversity in Population Based Reinforcement Learning

            Jack Parker-Holder, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Byzantine Resilient Distributed Multi-Task Learning
            03:19

            Byzantine Resilient Distributed Multi-Task Learning

            Jiani Li, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            MRI Banding Removal via Adversarial Training
            03:23

            MRI Banding Removal via Adversarial Training

            Aaron Defazio, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Variational Bayesian Monte Carlo with Noisy Likelihoods
            03:13

            Variational Bayesian Monte Carlo with Noisy Likelihoods

            Luigi Acerbi

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Wasserstein K-Means for Clustering Tomographic Projections
            09:11

            Wasserstein K-Means for Clustering Tomographic Projections

            Rohan Rao, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning
            14:30

            FedBE: Making Bayesian Model Ensemble Applicable to Federated Learning

            Hong-You Chen, …

            N2
            N2
            NeurIPS 2020 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2020 folgen