Oral: Understanding and Improving Training Efficiency for Deep Learning Recommendation with Partial Recovery

Apr 4, 2021

Speakers

About

The paper proposes and optimizes a partial recovery training system, CPR, for recommendation models. CPR relaxes the consistency requirement by enabling non-failed nodes to proceed without loading checkpoints when a node fails during training, improving failure-related overheads. The paper is the first to the extent of our knowledge to perform a data-driven, in-depth analysis of applying partial recovery to recommendation models and identified a trade-off between accuracy and performance. Motivated by the analysis, we present CPR, a partial recovery training system that can reduce the training time and maintain the desired level of model accuracy by (1) estimating the benefit of partial recovery, (2) selecting an appropriate checkpoint saving interval, and (3) prioritizing to save updates of more frequently accessed parameters. Two variants of CPR, CPR-MFU and CPR-SSU, reduce the checkpoint-related overhead from 8.2--8.5% to 0.53--0.68% compared to full recovery, on a setup emulating the failure pattern and overhead of a production-scale cluster. While reducing overhead significantly, CPR achieves model quality on par with the more expensive full recovery scheme, training the state-of-the-art recommendation model using Criteo’s Ads CTR dataset. Our preliminary results also suggest that CPR can speed up training on a real production-scale cluster, without notably degrading the accuracy.

Organizer

About MLSys 2021

The Conference on Machine Learning and Systems targets research at the intersection of machine learning and systems. The conference aims to elicit new connections amongst these fields, including identifying best practices and design principles for learning systems, as well as developing novel learning methods and theory tailored to practical machine learning workflows.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker