Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Oral: Accelerate Inference of CNNs for Video Analysis While Preserving Exactness Exploiting Activation Sparsity
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Oral: Accelerate Inference of CNNs for Video Analysis While Preserving Exactness Exploiting Activation Sparsity
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Oral: Accelerate Inference of CNNs for Video Analysis While Preserving Exactness Exploiting Activation Sparsity

            Apr 4, 2021

            Speakers

            TW

            Toshiaki Wakatsuki

            Řečník · 0 sledujících

            SK

            Sekitoshi Kanai

            Řečník · 0 sledujících

            YF

            Yasuhiro Fujiwara

            Řečník · 0 sledujících

            About

            This paper proposes a range-bound-aware convolution layer that accelerates the inference of rectified linear unit (ReLU)-based convolutional neural networks (CNNs) for analyzing video streams. Since video analysis systems require to process each video frame in real-time, the computational cost of inference of CNNs must be reduced. Several techniques heuristically skip the computation for the current frame and reuse the results of the previous frame when the current and previous frames are suffic…

            Organizer

            M2
            M2

            MLSys 2021

            Účet · 159 sledujících

            Categories

            Umělá inteligence a data science

            Kategorie · 10,8k prezentací

            About MLSys 2021

            The Conference on Machine Learning and Systems targets research at the intersection of machine learning and systems. The conference aims to elicit new connections amongst these fields, including identifying best practices and design principles for learning systems, as well as developing novel learning methods and theory tailored to practical machine learning workflows.

            Like the format? Trust SlidesLive to capture your next event!

            Professional recording and live streaming, delivered globally.

            Sharing

            Recommended Videos

            Presentations on similar topic, category or speaker

            Pipelined Backpropagation at Scale: Training Large Models without Batches
            04:14

            Pipelined Backpropagation at Scale: Training Large Models without Batches

            Atli Kosson, …

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            On-device federated learning with Flower
            17:11

            On-device federated learning with Flower

            Akhil Mathur, …

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Oral: Nimble: Efficiently Compiling Dynamic Neural Networks for Model Inference
            20:51

            Oral: Nimble: Efficiently Compiling Dynamic Neural Networks for Model Inference

            Haichen Shen, …

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Efficient ML on the Edge with Apache TVM
            43:02

            Efficient ML on the Edge with Apache TVM

            Thierry Moreau, …

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation
            04:45

            FirePlace: Placing Firecracker Virtual Machines with Hindsight Imitation

            Bharathan Balaji, …

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Session 5: Gradients and Precision
            2:11:16

            Session 5: Gradients and Precision

            M2
            M2
            MLSys 2021 4 years ago

            Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

            Interested in talks like this? Follow MLSys 2021