Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Free-rider Attacks on Model Aggregation in Federated Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Free-rider Attacks on Model Aggregation in Federated Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Free-rider Attacks on Model Aggregation in Federated Learning

            Apr 14, 2021

            Sprecher:innen

            YF

            Yann Fraboni

            Sprecher:in · 0 Follower:innen

            RV

            Richard Vidal

            Sprecher:in · 0 Follower:innen

            ML

            Marco Lorenzi

            Sprecher:in · 0 Follower:innen

            Über

            Free-rider attacks against federated learning consist in dissimulating participation to the federated learning process with the goal of obtaining the final aggregated model without actually contributing with any data. This kind of attacks are critical in sensitive applications of federated learning when data is scarce and the model has high commercial value. We introduce here the first theoretical and experimental analysis of free-rider attacks on federated learning schemes based on iterative pa…

            Organisator

            A2
            A2

            AISTATS 2021

            Konto · 63 Follower:innen

            Kategorien

            Informatik und IT

            Kategorie · 14,8k Präsentationen

            Über AISTATS 2021

            The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Oral: Sketch based Memory for Neural Networks
            13:54

            Oral: Sketch based Memory for Neural Networks

            Rina Panigrahy, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Dirichlet Pruning for Convolutional Neural Networks
            03:04

            Dirichlet Pruning for Convolutional Neural Networks

            Kamil Adamczewski, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Oral: A Variational Information Bottleneck Approach to Multi-Omics Data Integration
            10:30

            Oral: A Variational Information Bottleneck Approach to Multi-Omics Data Integration

            Changhee Lee, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Oral: Towards a Theoretical Understanding of the Robustness of Variational Autoencoders
            14:24

            Oral: Towards a Theoretical Understanding of the Robustness of Variational Autoencoders

            Alexander Camuto, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Adversarial Robustness via Unlabeled Out-of-Domain Data
            03:01

            Improving Adversarial Robustness via Unlabeled Out-of-Domain Data

            Zhun Deng, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Q-learning with Logarithmic Regret
            03:25

            Q-learning with Logarithmic Regret

            Saba Ahmadi, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? AISTATS 2021 folgen