Implicit Regularization via Neural Feature Alignment

14. duben 2021

Řečníci

O prezentaci

We approach the problem of implicit regularization in deep learning from a geometrical viewpoint. We highlight a regularization effect induced by a dynamical alignment ofthe neural tangent features introduced by Jacot et al. (2018), along a small number of task-relevant directions. This can be interpreted as a combined mechanism of feature selection and compression. By extrapolating a new analysis of Rademacher complexity bounds for linear models, we motivate and study a heuristic complexity measure that captures this phenomenon, in terms of sequences of tangent kernel classes along optimization paths. The code for our experiments is available as https://github.com/tfjgeorge/ntk_alignment.

Organizátor

O organizátorovi (AISTATS 2021)

The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.

Uložení prezentace

Měla by být tato prezentace uložena po dobu 1000 let?

Jak ukládáme prezentace

Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %

Sdílení

Doporučená videa

Prezentace na podobné téma, kategorii nebo přednášejícího