Apr 14, 2021
We approach the problem of implicit regularization in deep learning from a geometrical viewpoint. We highlight a regularization effect induced by a dynamical alignment ofthe neural tangent features introduced by Jacot et al. (2018), along a small number of task-relevant directions. This can be interpreted as a combined mechanism of feature selection and compression. By extrapolating a new analysis of Rademacher complexity bounds for linear models, we motivate and study a heuristic complexity measure that captures this phenomenon, in terms of sequences of tangent kernel classes along optimization paths. The code for our experiments is available as https://github.com/tfjgeorge/ntk_alignment.
The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.
Professional recording and live streaming, delivered globally.
Presentations on similar topic, category or speaker