Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Oral: On Learning Continuous Pairwise Markov Random Fields
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-006-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-006-alpha.b-cdn.net
      • sl-yoda-v2-stream-006-beta.b-cdn.net
      • 1549480416.rsc.cdn77.org
      • 1102696603.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Oral: On Learning Continuous Pairwise Markov Random Fields
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Oral: On Learning Continuous Pairwise Markov Random Fields

            Apr 14, 2021

            Sprecher:innen

            AS

            Abhin Shah

            Sprecher:in · 0 Follower:innen

            DS

            Devavrat Shah

            Sprecher:in · 1 Follower:in

            GWW

            Gregory W. Wornell

            Sprecher:in · 0 Follower:innen

            Über

            We consider learning a sparse pairwise Markov Random Field (MRF) with continuous-valued variables from i.i.d samples. We adapt the algorithm of Vuffray et al. (2019) to this setting and provide finite-sample analysis revealing sample complexity scaling logarithmically with the number of variables, as in the discrete and Gaussian settings. Our approach is applicable to a large class of pairwise MRFs with continuous variables and also has desirable asymptotic properties, including consistency and…

            Organisator

            A2
            A2

            AISTATS 2021

            Konto · 63 Follower:innen

            Kategorien

            Mathematik

            Kategorie · 2,4k Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über AISTATS 2021

            The 24th International Conference on Artificial Intelligence and Statistics was held virtually from Tuesday, 13 April 2021 to Thursday, 15 April 2021.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Abstract Value Iteration for Hierarchical RL
            02:57

            Abstract Value Iteration for Hierarchical RL

            Kishor Jothimurugan, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Unconstrained MAP Inference, Exponentiated DPPs, and Exponential Inapproximability
            02:55

            Unconstrained MAP Inference, Exponentiated DPPs, and Exponential Inapproximability

            Naoto Ohsaka

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            DAG-structured Clustering by Nearest Neighbors
            02:55

            DAG-structured Clustering by Nearest Neighbors

            Nicholas Monath, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
            03:07

            SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation

            Robert Gower, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Latent Gaussian process with composite likelihoods and numerical quadrature
            03:01

            Latent Gaussian process with composite likelihoods and numerical quadrature

            Siddharth Ramchandran, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the Privacy Properties of GAN-generated Samples
            03:09

            On the Privacy Properties of GAN-generated Samples

            Zinan Lin, …

            A2
            A2
            AISTATS 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? AISTATS 2021 folgen