Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive MT
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive MT
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Deep Encoder, Shallow Decoder: Reevaluating Non-autoregressive MT

            Mai 3, 2021

            Sprecher:innen

            JK

            Jungo Kasai

            Sprecher:in · 0 Follower:innen

            NP

            Nikolaos Pappas

            Sprecher:in · 1 Follower:in

            HP

            Hao Peng

            Sprecher:in · 0 Follower:innen

            Über

            During the recent years, much effort has been invested in non-autoregressive neural machine translation, which appears to be an efficient alternative to state-of-the-art autoregressive machine translation on modern GPUs. In contrast to the latter where generation is sequential, the former allows generation to be parallelized across target token positions. Non-autoregressive machine translation provides a tradeoff between translation quality and inference speed, but some of the latest models have…

            Organisator

            I2
            I2

            ICLR 2021

            Konto · 911 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit
            04:34

            Exploring the Uncertainty Properties of Neural Networks’ Implicit Priors in the Infinite-Width Limit

            Ben Adlam, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Economic Hyperparameter Optimization With Blended Search Strategy
            05:09

            Economic Hyperparameter Optimization With Blended Search Strategy

            Chi Wang, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning to see from few labels
            1:01:31

            Learning to see from few labels

            Bharath Hariharan

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Large Batch Simulation for Deep Reinforcement Learning
            05:29

            Large Batch Simulation for Deep Reinforcement Learning

            Brennan Shacklett, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Closing Remarks
            01:01

            Closing Remarks

            Yingzhen Li

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Balancing Constraints & Rewards with Meta-Gradient D4PG
            05:02

            Balancing Constraints & Rewards with Meta-Gradient D4PG

            Dan Andrei Calian, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICLR 2021 folgen