Text Generation by Learning from Demonstrations

May 3, 2021

Speakers

About

Current approaches to text generation largely rely on autoregressive models and maximum likelihood estimation. This paradigm leads to (i) diverse but low-quality samples due to mismatched learning objective and evaluation metric (likelihood vs. quality) and (ii) exposure bias due to mismatched history distributions (gold vs. model-generated). To alleviate these problems, we frame text generation as a reinforcement learning (RL) problem with expert demonstrations (i.e., the training data), where the goal is to maximize quality given model-generated histories. Prior RL approaches to generation often face optimization issues due to the large action space and sparse reward. We propose GOLD (generation by off-policy learning from demonstrations): an easy-to-optimize algorithm that learns from the off-policy demonstrations by importance weighting. According to both automatic and human evaluation, models trained by GOLD outperforms those trained by MLE and policy gradient on summarization, question generation, and machine translation. Further, they are less sensitive to decoding algorithms and alleviate exposure bias.

Organizer

Categories

About ICLR 2021

The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

Store presentation

Should this presentation be stored for 1000 years?

How do we store presentations

Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

Sharing

Recommended Videos

Presentations on similar topic, category or speaker