Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-002-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-002-alpha.b-cdn.net
      • sl-yoda-v2-stream-002-beta.b-cdn.net
      • 1001562353.rsc.cdn77.org
      • 1075090661.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters

            Mai 3, 2021

            Sprecher:innen

            AZ

            Aston Zhang

            Sprecher:in · 0 Follower:innen

            YT

            Yi Tay

            Sprecher:in · 0 Follower:innen

            SZ

            Shuai Zhang

            Sprecher:in · 1 Follower:in

            Über

            Recent works have demonstrated reasonable success of representation learning in hypercomplex space. Specifically, “fully-connected layers with Quaternions” (4D hypercomplex numbers), which replace real-valued matrix multiplications in fully-connected layers with Hamilton products of Quaternions, both enjoy parameter savings with only 1/4 learnable parameters and achieve comparable performance in various applications. However, one key caveat is that hypercomplex space only exists at very few pred…

            Organisator

            I2
            I2

            ICLR 2021

            Konto · 909 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization
            05:12

            Continuous Wasserstein-2 Barycenter Estimation without Minimax Optimization

            Alexander Korotin, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CT-Net: Channel Tensorization Network for Video Classification
            04:59

            CT-Net: Channel Tensorization Network for Video Classification

            Kunchang Li, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Low Curvature Activations Reduce Robust Overfitting
            03:04

            Low Curvature Activations Reduce Robust Overfitting

            Vasu Singla, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On the mapping between Hopfield networks and Restricted Boltzmann Machines
            14:13

            On the mapping between Hopfield networks and Restricted Boltzmann Machines

            Matthew Smart, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Isometric Transformation Invariant and Equivariant Graph Convolutional Networks
            04:36

            Isometric Transformation Invariant and Equivariant Graph Convolutional Networks

            Masanobu Horie, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Individually Fair Gradient Boosting
            10:14

            Individually Fair Gradient Boosting

            Alexander Vargo, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICLR 2021 folgen