Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Latent Skill Planning for Exploration and Transfer
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-009-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-009-alpha.b-cdn.net
      • sl-yoda-v2-stream-009-beta.b-cdn.net
      • 1766500541.rsc.cdn77.org
      • 1441886916.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Latent Skill Planning for Exploration and Transfer
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Latent Skill Planning for Exploration and Transfer

            Mai 3, 2021

            Sprecher:innen

            KX

            Kevin Xie

            Sprecher:in · 0 Follower:innen

            HB

            Homanga Bharadhwaj

            Sprecher:in · 0 Follower:innen

            DH

            Danijar Hafner

            Sprecher:in · 6 Follower:innen

            Über

            To quickly solve new tasks in complex environments, intelligent agents need to build up reusable knowledge. For example, a learned world model captures knowledge about the environment that applies to new tasks. Similarly, skills capture general behaviors that can apply to new tasks. In this paper, we investigate how these two approaches can be integrated into a single reinforcement learning agent. Specifically, we leverage the idea of partial amortization for fast adaptation at test time. For t…

            Organisator

            I2
            I2

            ICLR 2021

            Konto · 906 Follower:innen

            Kategorien

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICLR 2021

            The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Optimism in Reinforcement Learning with Generalized Linear Function Approximation
            04:51

            Optimism in Reinforcement Learning with Generalized Linear Function Approximation

            Yining Wang, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Oral Session 5
            3:04:40

            Oral Session 5

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning with Prototypical Representations
            17:41

            Reinforcement Learning with Prototypical Representations

            Denis Yarats, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Panel Discussion
            1:05:24

            Panel Discussion

            Eric Rice, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Improving Robustness to Label Noise in Text Classification via Noise Modeling
            04:23

            Improving Robustness to Label Noise in Text Classification via Noise Modeling

            Siddhant Garg, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Considerations for Practical Learned Video Coding
            40:02

            Considerations for Practical Learned Video Coding

            Oren Rippel, …

            I2
            I2
            ICLR 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICLR 2021 folgen