Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Bias-Variance Reduced Local SGD for Less Heterogeneous Federated Learning

            Jul 19, 2021

            Sprecher:innen

            TM

            Tomoya Murata

            Sprecher:in · 0 Follower:innen

            TS

            Taiji Suzuki

            Sprecher:in · 1 Follower:in

            Organisator

            I2
            I2

            ICML 2021

            Konto · 1k Follower:innen

            Kategorien

            Führungsmanagement

            Kategorie · 805 Präsentationen

            KI und Datenwissenschaft

            Kategorie · 10,8k Präsentationen

            Über ICML 2021

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Whitening for Self-Supervised Representation Learning
            04:38

            Whitening for Self-Supervised Representation Learning

            Aleksandr Ermolov, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Every Patient Deserves Their Own Equation
            29:25

            Every Patient Deserves Their Own Equation

            Kristin Swanson

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Local Algorithms for Finding Densely Connected Clusters
            19:44

            Local Algorithms for Finding Densely Connected Clusters

            Peter Macgregor, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 1 = 0.1%

            Non-Exponentially Weighted Aggregation: Regret Bounds for Unbounded Loss Functions
            04:35

            Non-Exponentially Weighted Aggregation: Regret Bounds for Unbounded Loss Functions

            Pierre Alquier

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks
            05:06

            ASAM: Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep Neural Networks

            Jungmin Kwon, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning 15 - Q&A
            11:28

            Reinforcement Learning 15 - Q&A

            Michael Chang, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2021 folgen