Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Multiple-criteria Based Active Learning with Fixed-size Determinantal Point Processes
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Multiple-criteria Based Active Learning with Fixed-size Determinantal Point Processes
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Multiple-criteria Based Active Learning with Fixed-size Determinantal Point Processes

            Jul 23, 2021

            Sprecher:innen

            XZ

            Xueying Zhan

            Sprecher:in · 0 Follower:innen

            QL

            Qing Li

            Sprecher:in · 0 Follower:innen

            ABC

            Antoni B. Chan

            Sprecher:in · 0 Follower:innen

            Organisator

            I2
            I2

            ICML 2021

            Konto · 1k Follower:innen

            Über ICML 2021

            The International Conference on Machine Learning (ICML) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence known as machine learning. ICML is globally renowned for presenting and publishing cutting-edge research on all aspects of machine learning used in closely related areas like artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, and robotics. ICML is one of the fastest growing artificial intelligence conferences in the world. Participants at ICML span a wide range of backgrounds, from academic and industrial researchers, to entrepreneurs and engineers, to graduate students and postdocs.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            High-Quality Data Labeling at Scale with Toloka - Q&A
            50:45

            High-Quality Data Labeling at Scale with Toloka - Q&A

            Olga Megorskaya, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation
            05:15

            OptiDICE: Offline Policy Optimization via Stationary Distribution Correction Estimation

            Jongmin Lee, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            On Recovering from Modeling Errors Using Testing Bayesian Networks
            05:09

            On Recovering from Modeling Errors Using Testing Bayesian Networks

            Haiying Huang, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A Regret Minimization Approach to Iterative Learning Control
            05:13

            A Regret Minimization Approach to Iterative Learning Control

            Naman Agarwal, …

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
            33:54

            Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing

            Ameet Talwalkar

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reinforcement Learning and Optimization - Q&A
            06:37

            Reinforcement Learning and Optimization - Q&A

            I2
            I2
            ICML 2021 4 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? ICML 2021 folgen