Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Curriculum Offline Imitating Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Curriculum Offline Imitating Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Curriculum Offline Imitating Learning

            Dez 6, 2021

            Sprecher:innen

            ML

            Minghuan Liu

            Sprecher:in · 0 Follower:innen

            HZ

            Hanye Zhao

            Sprecher:in · 0 Follower:innen

            ZY

            Zhengyu Yang

            Sprecher:in · 0 Follower:innen

            Über

            Offline reinforcement learning (RL) tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment. Despite the potential to surpass the behavioral policies, RL-based methods are generally impractical due to the training instability and bootstrapping the extrapolation errors, which always require careful hyperparameter tuning via online evaluation. In contrast, offline imitation learning (IL) has no such issues since it learns the policy directly…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Exponential Graphs are Provably Efficient for Decentralized Deep Training
            14:17

            Exponential Graphs are Provably Efficient for Decentralized Deep Training

            Bicheng Ying, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots
            13:48

            Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots

            Jagdeep Singh Bhatia, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Translating machine learning to the clinic in psychiatry
            27:16

            Translating machine learning to the clinic in psychiatry

            Roy Perlis

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CogALex 2.0: Impact of Data Quality on Lexical-Semantic Relation Prediction
            02:07

            CogALex 2.0: Impact of Data Quality on Lexical-Semantic Relation Prediction

            Christian Lang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            XAI:: Beware of the Ostrich Policy: End-Users’ Perceptions  Towards Data Transparency and Control
            03:46

            XAI:: Beware of the Ostrich Policy: End-Users’ Perceptions Towards Data Transparency and Control

            Sruthi Viswanathan

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen