Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Curriculum Offline Imitating Learning
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-011-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-011-alpha.b-cdn.net
      • sl-yoda-v3-stream-011-beta.b-cdn.net
      • 1150868944.rsc.cdn77.org
      • 1511650057.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Curriculum Offline Imitating Learning
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Curriculum Offline Imitating Learning

            6. prosince 2021

            Řečníci

            ML

            Minghuan Liu

            Speaker · 0 followers

            HZ

            Hanye Zhao

            Speaker · 0 followers

            ZY

            Zhengyu Yang

            Speaker · 0 followers

            O prezentaci

            Offline reinforcement learning (RL) tasks require the agent to learn from a pre-collected dataset with no further interactions with the environment. Despite the potential to surpass the behavioral policies, RL-based methods are generally impractical due to the training instability and bootstrapping the extrapolation errors, which always require careful hyperparameter tuning via online evaluation. In contrast, offline imitation learning (IL) has no such issues since it learns the policy directly…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Account · 1.9k followers

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            On the Impossibility of Fairness-Aware Learning from Corrupted Data
            10:06

            On the Impossibility of Fairness-Aware Learning from Corrupted Data

            Nikola Konstantinov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Closing Remarks
            03:34

            Closing Remarks

            Maria Schuld, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators
            12:51

            Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators

            Qitian Wu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Implications of Modeled Beliefs for Algorithmic Fairness in Machine Learning
            03:17

            Implications of Modeled Beliefs for Algorithmic Fairness in Machine Learning

            Jeff Edmonds, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity
            15:06

            Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics Organized by Astrocyte-modulated Plasticity

            Vladimir Ivanov, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Dataset Distillation with Infinitely Wide Convolutional Networks
            14:56

            Dataset Distillation with Infinitely Wide Convolutional Networks

            Timothy Nguyen, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Total of 0 viewers voted for saving the presentation to eternal vault which is 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021