Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Automatic Data Augmentation for Generalization in Reinforcement Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v2-stream-010-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v2-stream-010-alpha.b-cdn.net
      • sl-yoda-v2-stream-010-beta.b-cdn.net
      • 1759419103.rsc.cdn77.org
      • 1016618226.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Automatic Data Augmentation for Generalization in Reinforcement Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Automatic Data Augmentation for Generalization in Reinforcement Learning

            Dez 6, 2021

            Sprecher:innen

            RR

            Roberta Raileanu

            Sprecher:in · 0 Follower:innen

            MG

            Maxwell Goldstein

            Sprecher:in · 0 Follower:innen

            DY

            Denis Yarats

            Sprecher:in · 0 Follower:innen

            Über

            Deep reinforcement learning (RL) agents often fail to generalize beyond their training environments. To alleviate this problem, recent work has proposed the use of data augmentation. However, different tasks tend to benefit from different types of augmentations and selecting the right one typically requires expert knowledge. In this paper, we introduce three approaches for automatically finding an effective augmentation for any RL task. These are combined with two novel regularization terms for…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging
            16:36

            Uncertainty Quantification in End-to-End Implicit Neural Representations for Medical Imaging

            Francisca Vasconcelos, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            A generative nonparametric Bayesian model for whole genomes
            13:13

            A generative nonparametric Bayesian model for whole genomes

            Alan N. Amin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Adaptive Machine Unlearning
            14:06

            Adaptive Machine Unlearning

            Varun Gupta, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            IGLU: Interactive Grounded Language Understanding  in a Collaborative Environment
            20:31

            IGLU: Interactive Grounded Language Understanding in a Collaborative Environment

            Julia Kiseleva, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Call for Challenge: Data and Knowledge Hybridization with Multi-modal Imagery for Rapid Response in Disaster Management
            07:41

            Call for Challenge: Data and Knowledge Hybridization with Multi-modal Imagery for Rapid Response in Disaster Management

            Debraj De, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fast and Data-Efficient Training of Rainbow: an Experimental Study on Atari
            02:26

            Fast and Data-Efficient Training of Rainbow: an Experimental Study on Atari

            Dominik Schmidt, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen