Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding

            Dez 6, 2021

            Sprecher:innen

            AB

            Andreis Bruno

            Sprecher:in · 0 Follower:innen

            JRW

            Jeffrey Ryan Willette

            Sprecher:in · 0 Follower:innen

            JL

            Juho Lee

            Sprecher:in · 0 Follower:innen

            Über

            Most existing set encoding algorithms operate under the implicit assumption that all the set elements are accessible, and that there are ample computational and memory resources to load the set into memory during training and inference. However, both assumptions fail when the set is excessively large such that it is impossible to load all set elements into memory, or when data arrives in a stream. To tackle such practical challenges in large-scale set encoding, the general set-function constrai…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Nonuniform Negative Sampling and Log Odds Correction with Rare Events Data
            14:58

            Nonuniform Negative Sampling and Log Odds Correction with Rare Events Data

            HaiYing Wang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence
            14:14

            Learning High-Precision Bounding Box for Rotated Object Detection via Kullback-Leibler Divergence

            Xue Yang

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning For Numerical PDE : Scaling Law and Minimax Optimality
            13:59

            Machine Learning For Numerical PDE : Scaling Law and Minimax Optimality

            Yiping Lu

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Low-Fidelity Video Encoder Optimization for Temporal Action Localization
            14:34

            Low-Fidelity Video Encoder Optimization for Temporal Action Localization

            Mengmeng Xu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning Leveraging Planning
            03:02

            UMBRELLA: Uncertainty-Aware Model-Based Offline Reinforcement Learning Leveraging Planning

            Christopher Diehl, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Online Learning Of Neural Computations From Sparse Temporal Feedback
            15:04

            Online Learning Of Neural Computations From Sparse Temporal Feedback

            Lukas Braun, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen