Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-015-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-015-alpha.b-cdn.net
      • sl-yoda-v3-stream-015-beta.b-cdn.net
      • 1963568160.rsc.cdn77.org
      • 1940033649.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Mini-Batch Consistent Slot Set Encoder for Scalable Set Encoding

            6. prosince 2021

            Řečníci

            AB

            Andreis Bruno

            Sprecher:in · 0 Follower:innen

            JRW

            Jeffrey Ryan Willette

            Sprecher:in · 0 Follower:innen

            JL

            Juho Lee

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Most existing set encoding algorithms operate under the implicit assumption that all the set elements are accessible, and that there are ample computational and memory resources to load the set into memory during training and inference. However, both assumptions fail when the set is excessively large such that it is impossible to load all set elements into memory, or when data arrives in a stream. To tackle such practical challenges in large-scale set encoding, the general set-function constrai…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Mixture Proportion Estimation and PU Learning: A Modern Approach
            14:52

            Mixture Proportion Estimation and PU Learning: A Modern Approach

            Saurabh Garg, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Galaxy Morphological Classification with Efficient Vision Transformer
            03:50

            Galaxy Morphological Classification with Efficient Vision Transformer

            Joshua Yao-Yu Lin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem
            11:37

            Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem

            Adarsh Barik, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning to Coordinate in Complex Environments
            26:26

            Learning to Coordinate in Complex Environments

            Bo An

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Machine Learning for Snow Stratigraphy Classification
            05:01

            Machine Learning for Snow Stratigraphy Classification

            Julia Kaltenborn, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis
            07:19

            Spatial-Temporal Super-Resolution of Satellite Imagery via Conditional Pixel Synthesis

            Yutong He, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021