Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Poodle: Improving Few-shot Learning via Penalizing Out-of-Distribution Samples
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-014-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-014-alpha.b-cdn.net
      • sl-yoda-v3-stream-014-beta.b-cdn.net
      • 1978117156.rsc.cdn77.org
      • 1243944885.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Poodle: Improving Few-shot Learning via Penalizing Out-of-Distribution Samples
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Poodle: Improving Few-shot Learning via Penalizing Out-of-Distribution Samples

            Dez 6, 2021

            Sprecher:innen

            DHL

            Duong H. Le

            Sprecher:in · 0 Follower:innen

            KDN

            Khoi D. Nguyen

            Sprecher:in · 0 Follower:innen

            KN

            Khoi Nguyen

            Sprecher:in · 0 Follower:innen

            Über

            In this work, we propose to use out-of-distribution samples, i.e., unlabeled samples coming from outside the target classes, to improve few-shot learning. Specifically, we exploit the easily available out-of-distribution samples to drive the classifier to avoid irrelevant features by maximizing the distance from prototypes to out-of-distribution samples while minimizing that of in-distribution samples (i.e., support, query data). Our approach is simple to implement, agnostic to feature extractor…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            A versatile and efficient approach to summarize speech into utterance-level representations
            05:31

            A versatile and efficient approach to summarize speech into utterance-level representations

            João Monteiro, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Distributed Zero-Order Optimization under Adversarial Noise
            08:12

            Distributed Zero-Order Optimization under Adversarial Noise

            Arya Akhavan, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            What Would the Expert do()?: Causal Imitation Learning
            03:00

            What Would the Expert do()?: Causal Imitation Learning

            Gokul Swamy, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            The Lean Proof Assistant (for an ML Audience)
            56:11

            The Lean Proof Assistant (for an ML Audience)

            Daniel Selsam

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Moderated Q&A (Topic:  pediatrics)
            36:12

            Moderated Q&A (Topic: pediatrics)

            Julia Vogt, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Programming Puzzles
            09:59

            Programming Puzzles

            Tal Schuster, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen