6. prosince 2021
Řečník · 0 sledujících
Řečník · 1 sledující
We propose a new discretization of the mirror-Langevin diffusion and give a crisp proof of its convergence. Our analysis uses relative convexity/smoothness and self-concordance, ideas which originated in convex optimization, together with a new result in optimal transport that generalizes the displacement convexity of the entropy. Unlike prior works, our result both (1) requires much weaker assumptions on the mirror map and the target distribution, and (2) has vanishing bias as the step size tends to zero. In particular, for the task of sampling from a log-concave distribution supported on a compact set, our theoretical results are significantly better than the existing guarantees.We propose a new discretization of the mirror-Langevin diffusion and give a crisp proof of its convergence. Our analysis uses relative convexity/smoothness and self-concordance, ideas which originated in convex optimization, together with a new result in optimal transport that generalizes the displacement convexity of the entropy. Unlike prior works, our result both (1) requires much weaker assumptions on the mirror map and the target distribution, and (2) has vanishing bias as the step size ten…
Účet · 1,9k sledujících
Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.
Profesionální natáčení a streamování po celém světě.
Prezentace na podobné téma, kategorii nebo přednášejícího
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Fangrui Lv, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Zhaozhuo Xu, …
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %
Pro uložení prezentace do věčného trezoru hlasovalo 0 diváků, což je 0.0 %