Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Localization, Convexity, and Star Aggregation
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-012-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-012-alpha.b-cdn.net
      • sl-yoda-v3-stream-012-beta.b-cdn.net
      • 1338956956.rsc.cdn77.org
      • 1656830687.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Localization, Convexity, and Star Aggregation
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Localization, Convexity, and Star Aggregation

            6. prosince 2021

            Řečníci

            SV

            Suhas Vijaykumar

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Offset Rademacher complexities have been shown to imply sharp, data-dependent upper bounds for the square loss in a broad class of problems including improper statistical learning and online learning. We show that in the statistical setting, the offset complexity upper bound can be generalized to any loss satisfying a certain uniform convexity condition. Surprisingly, this condition is shown to also capture exponential concavity and self-concordance, uniting several apparently disparate results…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Adaptive Risk Minimization: Learning to Adapt to Domain Shift
            09:30

            Adaptive Risk Minimization: Learning to Adapt to Domain Shift

            Marvin Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Asymptotically Best Causal Effect Identification with Multi-Armed Bandits!
            13:52

            Asymptotically Best Causal Effect Identification with Multi-Armed Bandits!

            Alan Malek, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks
            05:21

            Learning Action Translator for Meta Reinforcement Learning on Sparse-Reward Tasks

            Yijie Guo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Bayesian Optimization of Function Networks
            15:14

            Bayesian Optimization of Function Networks

            Raúl Astudillo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
            13:58

            Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

            Hanxuan Huang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Subspace Detours Meet Gromov-Wasserstein
            04:05

            Subspace Detours Meet Gromov-Wasserstein

            Clément Bonet, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021