Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Deep Self-Dissimilarities as Powerful Visual Fingerprints
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v3-stream-016-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v3-stream-016-alpha.b-cdn.net
      • sl-yoda-v3-stream-016-beta.b-cdn.net
      • 1504562137.rsc.cdn77.org
      • 1896834465.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Deep Self-Dissimilarities as Powerful Visual Fingerprints
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Deep Self-Dissimilarities as Powerful Visual Fingerprints

            6. prosince 2021

            Řečníci

            IK

            Idan Kligvasser

            Sprecher:in · 0 Follower:innen

            TRS

            Tamar Rott Shaham

            Sprecher:in · 0 Follower:innen

            YB

            Yuval Bahat

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Features extracted from deep layers of classification networks are widely used as image descriptors. Here, we exploit an unexplored property of these features: their internal dissimilarity. While small image patches are known to have similar statistics across image scales, it turns out that the internal distribution of deep features varies distinctively between scales. We show how this deep self dissimilarity (DSD) property can be used as a powerful visual fingerprint. Particularly, we illustrat…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            Few-Shot Data-Driven Algorithms for Low Rank Approximation
            14:50

            Few-Shot Data-Driven Algorithms for Low Rank Approximation

            Piotr Indyk, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Methods: Self-prediction and Contrastive learning
            17:45

            Methods: Self-prediction and Contrastive learning

            Lilian Weng

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 2 = 0.2%

            Principled Al Algorithms for predicting and mitigating climate change
            46:40

            Principled Al Algorithms for predicting and mitigating climate change

            Anima Anandkumar

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives
            04:40

            ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

            Toshinori Kitamura, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Deep Extended Hazard Models for Survival Analysis
            11:54

            Deep Extended Hazard Models for Survival Analysis

            Qixian Zhong, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Reliable Decisions with Threshold Calibration
            07:50

            Reliable Decisions with Threshold Calibration

            Roshni Sahoo, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021