Next
Livestream will start soon!
Livestream has already ended.
Presentation has not been recorded yet!
  • title: Simple Stochastic and Online Gradient Descent Algorithms for Pairiwise Learning
      0:00 / 0:00
      • Report Issue
      • Settings
      • Playlists
      • Bookmarks
      • Subtitles Off
      • Playback rate
      • Quality
      • Settings
      • Debug information
      • Server sl-yoda-v3-stream-013-alpha.b-cdn.net
      • Subtitles size Medium
      • Bookmarks
      • Server
      • sl-yoda-v3-stream-013-alpha.b-cdn.net
      • sl-yoda-v3-stream-013-beta.b-cdn.net
      • 1668715672.rsc.cdn77.org
      • 1420896597.rsc.cdn77.org
      • Subtitles
      • Off
      • English
      • Playback rate
      • Quality
      • Subtitles size
      • Large
      • Medium
      • Small
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      My playlists
        Bookmarks
          00:00:00
            Simple Stochastic and Online Gradient Descent Algorithms for Pairiwise Learning
            • Settings
            • Sync diff
            • Quality
            • Settings
            • Server
            • Quality
            • Server

            Simple Stochastic and Online Gradient Descent Algorithms for Pairiwise Learning

            Dez 6, 2021

            Sprecher:innen

            ZY

            Zhenhuan Yang

            Sprecher:in · 0 Follower:innen

            YL

            Yunwen Lei

            Sprecher:in · 0 Follower:innen

            PW

            Puyu Wang

            Sprecher:in · 0 Follower:innen

            Über

            Pairwise learning refers to learning tasks where the loss function depends on a pair of instances. It instantiates many important machine learning tasks such as bipartite ranking and metric learning. A popular approach to handle streaming data in pairwise learning is an online gradient descent (OGD) algorithm, where one needs to pair the current instance with a buffering set of previous instances with a sufficiently large size and therefore suffers from a scalability issue. In this paper, we pro…

            Organisator

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            Über NeurIPS 2021

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Gefällt euch das Format? Vertraut auf SlidesLive, um euer nächstes Event festzuhalten!

            Professionelle Aufzeichnung und Livestreaming – weltweit.

            Freigeben

            Empfohlene Videos

            Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind

            Self-Supervised Learning: Self-Prediction and Contrastive Learning
            3:01:55

            Self-Supervised Learning: Self-Prediction and Contrastive Learning

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Uncertainty-Driven Loss for Single Image Super-Resolution
            06:57

            Uncertainty-Driven Loss for Single Image Super-Resolution

            Qian Ning, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Off-Policy Correction For Multi-Agent Reinforcement Learning
            03:24

            Off-Policy Correction For Multi-Agent Reinforcement Learning

            Michał Zawalski, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Benchmarks for Multi-Objective Hyperparameter Optimization
            37:10

            Benchmarks for Multi-Objective Hyperparameter Optimization

            Kevin Duh

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum
            15:05

            CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

            Shuang Ao, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Gradient-Based Memory Editing for Task-Free Continual Learning
            13:57

            Gradient-Based Memory Editing for Task-Free Continual Learning

            Xisen Jin, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Interessiert an Vorträgen wie diesem? NeurIPS 2021 folgen