Další
Živý přenos začne již brzy!
Živý přenos již skončil.
Prezentace ještě nebyla nahrána!
  • title: Collaborative Uncertainty in Multi-Agent Trajectory Forecasting
      0:00 / 0:00
      • Nahlásit chybu
      • Nastavení
      • Playlisty
      • Záložky
      • Titulky Off
      • Rychlost přehrávání
      • Kvalita
      • Nastavení
      • Debug informace
      • Server sl-yoda-v2-stream-003-alpha.b-cdn.net
      • Velikost titulků Střední
      • Záložky
      • Server
      • sl-yoda-v2-stream-003-alpha.b-cdn.net
      • sl-yoda-v2-stream-003-beta.b-cdn.net
      • 1544410162.rsc.cdn77.org
      • 1005514182.rsc.cdn77.org
      • Titulky
      • Off
      • English
      • Rychlost přehrávání
      • Kvalita
      • Velikost titulků
      • Velké
      • Střední
      • Malé
      • Mode
      • Video Slideshow
      • Audio Slideshow
      • Slideshow
      • Video
      Moje playlisty
        Záložky
          00:00:00
            Collaborative Uncertainty in Multi-Agent Trajectory Forecasting
            • Nastavení
            • Sync diff
            • Kvalita
            • Nastavení
            • Server
            • Kvalita
            • Server

            Collaborative Uncertainty in Multi-Agent Trajectory Forecasting

            6. prosince 2021

            Řečníci

            BT

            Bohan Tang

            Sprecher:in · 0 Follower:innen

            YZ

            Yiqi Zhong

            Sprecher:in · 0 Follower:innen

            UN

            Ulrich Neumann

            Sprecher:in · 0 Follower:innen

            O prezentaci

            Uncertainty modeling is critical in trajectory-forecasting systems for both interpretation and safety reasons. To better predict the future trajectories of multiple agents, recent works have introduced interaction modules to capture interactions among agents. This approach leads to correlations among the predicted trajectories. However, the uncertainty brought by such correlations is neglected. To fill this gap, we propose a novel concept, collaborative uncertainty (CU), which models the uncerta…

            Organizátor

            N2
            N2

            NeurIPS 2021

            Konto · 1,9k Follower:innen

            O organizátorovi (NeurIPS 2021)

            Neural Information Processing Systems (NeurIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting.

            Baví vás formát? Nechte SlidesLive zachytit svou akci!

            Profesionální natáčení a streamování po celém světě.

            Sdílení

            Doporučená videa

            Prezentace na podobné téma, kategorii nebo přednášejícího

            BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation
            03:49

            BlendGAN: Implicitly GAN Blending for Arbitrary Stylized Face Generation

            Mingcong Liu, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Taming the Importance Weights of The Variance-Reduced Policy Gradient Method
            14:49

            Taming the Importance Weights of The Variance-Reduced Policy Gradient Method

            Junyu Zhang, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Opening remarks
            07:36

            Opening remarks

            Shiori Sagawa

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Double Machine Learning Density Estimation for Local Treatment Effects with Instruments
            14:24

            Double Machine Learning Density Estimation for Local Treatment Effects with Instruments

            Yonghan Jung, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Variance-Aware Off-Policy Evaluation with Linear Function Approximation
            12:17

            Variance-Aware Off-Policy Evaluation with Linear Function Approximation

            Yifei Min, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Rethinking Neural Operations for Diverse Tasks
            10:26

            Rethinking Neural Operations for Diverse Tasks

            Nick Roberts, …

            N2
            N2
            NeurIPS 2021 3 years ago

            Ewigspeicher-Fortschrittswert: 0 = 0.0%

            Zajímají Vás podobná videa? Sledujte NeurIPS 2021